
Advances in Science, Technology and Engineering Systems Journal
Vol. 7, No. 3, 19-31 (2022)

www.astesj.com
Special Issue on Multidisciplinary Sciences and Engineering

ASTES Journal
ISSN: 2415-6698

Towards a Model-based and Variant-oriented Development of a System of
Systems
Sylvia Melzer*1,2, Stefan Thiemann3, Hagen Peukert3, Ralf Möller1

1Universität zu Lübeck, Institute of Information Systems, Lübeck, 23562, Germany
2Universität Hamburg, Centre for the Study of Manuscript Cultures, Warburgstraße 26, 20354 Hamburg, Germany
3Universität Hamburg, Center for Sustainable Research Data Management, Monetastraße 4, 20146 Hamburg, Germany

A R T I C L E I N F O A B S T R A C T

Article history:
Received: 15 February, 2022
Accepted: 14 May, 2022
Online: 25 May, 2022

Keywords:
System of Systems
SysML
Information System
Variants

The development of an aggregated system consisting of autonomously developed components
is usually implemented as a self-contained unit. If such an aggregation is understood as a
system of systems (SoS) that communicates via interfaces with its autonomous subsystems and
components, the interfaces and communication exchange should play a central role in the
architectural design. In fact, complete and exact interface specifications simplify loose coupling
of independent systems into an aggregation. Since an SoS consists of variant and non-variant
subsystems, the main challenge in SoS development is the identification of all true variants and
its deviating attributes within an SoS. If the system variants are identified at an early stage of the
development process, redundant work in the interface design can be substantially reduced. This
paper presents an efficient method to identify SoS variants with regard to life cycle management
and it shows how to configure a variant-oriented SoS with a standardized communication
interface. For the development, the forward-looking model-based systems engineering approach
is recommended to create executable specification parts and to detect errors early on through
simulations.

1 Introduction

The Centre for the Study of Manuscript Cultures (CSMC) at
Universität Hamburg hosts a steadily growing number of au-
tonomously developed database systems, e.g., for the projects Epi-
graphic database of ancient Asia Minor (EDAK) (https://www.
epigraphik.uni-hamburg.de), Going From Hand to Hand: Net-
works of Intellectual Exchange in the Tamil Learned Traditions (NE-
Tamil) (https://www.manuscript-cultures.uni-hamburg.
de/netamil/), and Thesaurus Defixionum (TheDefix) (www.
thedefix.uni-hamburg.de). As a first priority requirement, the
database schema reflect the high data variety of these research
projects while maintaining the same overall structure. If these
databases are now combined into an aggregated information system,
new functionalities that are designed to the overall structure and
not to the peculiarities of each schema can be defined as it is the
case for federated searches. In addition, one can very well imagine
that new database systems would like to connect to the aggregated
information system later on as long as the structure remains clear.

An illustration for the usefulness of an aggregated information

system are trove discoveries, whose associated parts, for some rea-
son, are scattered at different places in the world as it often happens
for old manuscripts. Such script fragments are administered in
different information systems. As an example, one fragment AO
29196 [1] is located at the Louvre and the counterpart of this frag-
ment, KUG 15 [2], is located in Germany. Indeed, both fragments
were discovered without using federated search queries, but for
analyzing data from different databases it would be desirable to
find related data in an aggregated information system. This exam-
ple highlights the need to combine, analyze, and query data from
different database systems.

The requirement for the development of an aggregated system
is, on the one hand, to develop autonomous systems in such a way
that the variant parts are not implemented redundantly and, on the
other hand, that external databases can be added to the aggregated
system without much effort.

A systematic approach to model variant parts was developed
at the Institute of Product Development and Mechanical Engineer-
ing Design (PKT) at the Hamburg University of Technology. The
variant-oriented approach is called integrated PKT approach (see

*Corresponding Author: Sylvia Melzer, Universität Hamburg, Centre for the Study of Manuscript Cultures, Warburgstraße 26, 20354 Hamburg, Germany,
sylvia.melzer@uni-hamburg.de

www.astesj.com
https://dx.doi.org/10.25046/aj070303

19

http://www.astesj.com
https://www.epigraphik.uni-hamburg.de
https://www.epigraphik.uni-hamburg.de
https://www.manuscript-cultures.uni-hamburg.de/netamil/
https://www.manuscript-cultures.uni-hamburg.de/netamil/
www.thedefix.uni-hamburg.de
www.thedefix.uni-hamburg.de
https://www.astesj.com
https://dx.doi.org/10.25046/aj070303

S. Melzer et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 19-31 (2022)

[3]). The integrated PKT approach aims at satisfying a wide variety
of customer requirements while developing a component. Ideally,
the approach applies to a product family that is developed within one
organization, for which the marketed products are supposed to have
as few variants as possible. Also, adding an external sub-product
to the product family at a later date must be considered very early
on in the planning phase. Early consideration of coupling systems
or products can lead to modularization of systems to support the
approach. The integrated PKT approach also supports modulariza-
tion. Nevertheless, it is not always possible to extend the product
family by a new variant. Another core idea of the integrated PKT
approach, besides the variant-oriented development of products, is
the combination of the database into an SoS and keeping the main
focus on the development of a communication interface. While
there are some good approaches to SoS development already, an
approach that considers system variants during development of an
SoS is to the best of our knowledge not yet available.

For the development of an SoS, model-based methods using the
Systems Modeling Language (SysML) are increasingly used. Users
also benefit from the general Model-Based Systems Engineering
(MBSE) advantages, such as making complexity manageable. The
first model-based SoS developing methods are evolving, cf. [4] as
well as [5].

In this paper, we present a provident, model-based, and variant-
oriented approach to develop new functions for an aggregated infor-
mation system so that all functions can be used simultaneously to
the benefit of all database systems.

The paper is structured as follows. In Section 2 and Section 3
we give an overview on related work and preliminaries for devel-
oping a model-based and variant-oriented SoS. In Section 4 we
describe how to develop variant-oriented and sustainable informa-
tion systems such that as many customer requirements as possible
are considered while increasing the number of variants and reducing
the necessity of redundant information system development.

In Section 5 we present, first, how variant and SoS relevant re-
quirements are elicited during the requirements engineering process,
and second, how to design the structure of an SoS. In Section 6 we
describe modeling and simulating the systems’ behavior to execute
a federated search as an example. The application of our new ap-
proach and its results are presented in Section 7. We like to close in
Section 8 with a summary and a preview of future work.

2 Related Work

Despite its frequent usage, there is little agreement nowadays on a
concise and general definition of the term system of systems (SoS).
Some approaches of SoS distinguish between SoS and traditional
systems. These approaches elaborate specifically on the heuris-
tics of SoS development. They also emphasize the differences to
traditional systems. More particularly, it has been noted that the
architecture of an SoS aims at optimal communication for the vast
majority of all SoS (see e.g. [4, 6, 7]).

The application in [4] illustrates the development of a Trusted
Forwarder System (TFS) for a secured air cargo transport chain as
an SoS using a set of standards that enable useful communication
between existing and newly developed components. For the TFS, a

communication standard is used that satisfies the new requirements.
Thus, after SoS integration, the systems and components are enabled
to follow their original tasks without diversion.

In [7], the authors show how, from autonomously developed
database systems, an aggregated information system enables rela-
tively simple data exchange through a standardized communication
interface. If the individual systems are combined into a federated
system via a communication interface, new functions can be added
easily, such as the federated search functionality. With the new
search function, the individual systems can perform searches in
all databases (as opposed to only one database) provided that ac-
cess rights are correctly assigned. The new search feature can be
considered as a new service relevant for a broader range of users.

Both aggregated systems, the TFS and the aggregated informa-
tion system, were initially developed as single systems, cf. [8, 9].
The single system and the SoS development of the TFS were com-
pared in [4]. It was observed that the SoS development approach
mainly is advantageous for traceability beyond the system perspec-
tive to the service. The advantages of re-usability of a system,
which was developed as SoS, are plain to see: Communication in-
terfaces give more flexibility to add new functionalities or remove
subsystems from the overall system.

In [6], the author recommends a stable architectural design for
SoS. Such stability can be achieved by admitting independently,
i.e. autonomously, developed systems in the architectural design
together with a communication interface.

Model-based approaches, such as the Variant Modeling with
SysML (VAMOS) presented in [10], pure::variant (https://
www.pure-systems.com/purevariants), the Variety Allocation
Model (VAM) (variant-oriented developing process of the integrated
PKT approach) with SysML [11], exist to identify possible variants
in the early phase of system development. The methods VAMOS
and VAM with SysML can be represented in the SysML modeling
tool Cameo Systems Modeler by extending the language elements.
Pure::variant can be used as a stand-alone entity for variant mod-
eling. In this paper we decided for VAMOS, since it was already
applied in [7] for the development of a cross-domain information
system.

Cameo Systems Modeler and the broker-based SysML Toolbox
have been successfully used for simple modeling of communication
networks in several projects such as SiLuFra [12], ConCabInO [13],
KomKab [14], and KMUDigital [15].

3 Preliminaries
This section describes the languages, methods, and tools proposed
for a model-based and variant-oriented development of an SoS.

3.1 Modeling Languages

According to the recommendations of MBSE, systems are described
or documented using semi-formal modeling languages such as the
Unified Modeling Language (UML) or the SysML.

Systems Modeling Language SysML was specified by the Ob-
ject Management Group (OMG) to support the model-based devel-

www.astesj.com 20

https://www.pure-systems.com/purevariants
https://www.pure-systems.com/purevariants
http://www.astesj.com

S. Melzer et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 19-31 (2022)

opment of complex systems during the system development process.
SysML is a subset of the standardized language UML 2 including
some additional extensions. A SysML model can be used to de-
scribe the structure as well as the behavior of a system, and can be
used to simulate the behavior of systems. In this paper, the focus
of variant modeling is on structure. For variant behavior modeling,
further challenges are to be expected (cf. [16]), which should be
addressed separately due to the complexity of SoS development.

Variant Modeling with SysML A variant is characterized by a
base model and differentiating parts, where the base model repre-
sents the core of the system and the differentiating parts represent
the distinctions of the system components (see [17]). In [10], the
author specified VAMOS to model variants with SysML. To use this,
the existing model elements in SysML are extended (see Figure 1).
The two model elements Package and NamedElement are extended
with the stereotypes Variant, Variation, VariationPoint, and Varia-
tionElement. The Variation is a stereotype of the Metaclass Package,
which contains all the elements of an option of Variation. A Varia-
tion is also a stereotype of the Metaclass Package, which contains
multiple variation packages. A VariationPoint is a stereotype of the
Metaclass NamedElement.

VAMOS is suitable for systems with some variability. Further-
more, VAMOS is applicable for the use of structural elements. For
the description of variant system behavior, VAMOS can be applied
conceptually. Practical applications usually exploit extensions of
further SysML language elements related to the behavior necessitat-
ing the variant behavior description (see [16]).

Figure 1: Profile diagram: Variant Modeling with SysML (VAMOS) for the develop-
ment of a cross-domain information system

3.2 Methods

Context-Based Requirements Engineering The identification
of variants should be done as early as possible, so it is necessary
that views of all stakeholders involved are considered during the
requirements engineering process. The associated systems have to
be identified during the SoS context description process. In [18],
the authors have defined the Approach for Context-Based Require-
ments Engineering (ACRE) ontology with the goal to capture the
requirements of all stakeholders and manage them during the entire
system development process. A fundamental approach of the ACRE
ontology is the context, since it emphasizes and defines the view of
use cases and requirements. Depending on the use cases, some new
model-based systems engineering approaches add specific contexts

defined for system or product development, e.g. the life phase mod-
ularization context in [8], the variety context in [11], and the system
of systems context in [19]. In [20, 21], a supplemented ACRE on-
tology with the SoS aspect are presented and also introduce new
terms for system development. Adding the variety context to the
SoS approach results in a new variant-oriented approach, which is
described in this paper.

V-model For all IT projects in the federal public administration,
the V-model is a mandatory procedural standard. The processes of
the V-model, inspired by the V-model XT (see www.v-modell-xt.
de), can be described as follows: analysis of requirements, func-
tional analysis, high-level design, low-level design, implementation,
component test, system test, integration test, and acceptance test.
Verification and validation also belongs to the processes.

We argue that the V-model is a good basis for system develop-
ment, so we have used this approach to develop information systems.
For a variant-oriented development and implementation of a com-
munication interface, it is important to consider in the individual
process steps like the high-level design, that, among other properties,
combined approaches are used to develop the SoS efficiently and
correctly. Approaches for the development of an SoS are described
in Subsection 5.2.

Broker Federation The brokerage network enables the creation
of message routing networks, in which messages in one broker are
automatically routed to another broker. These routes may be defined,
e.g., between exchanges in the source and destination brokers, or
from a message queue in the source broker to an exchange in the
destination broker [22]. The principle of coupling systems via a
broker federation is a practically proven approach that is used in
many applications. In this paper, broker federation is used to create
a communication interface between the systems to develop the SoS.

3.3 Tools

Communication Tool The open-source message broker Rab-
bitMQ (https://www.rabbitmq.com/) can be used to create
communication networks. RabbitMQ uses the Advanced Messag-
ing Queuing Protocol (AMQP) as a standardized communication
technology. AMQP defines three components which are essential
to implement a message-based architecture. 1) The message queue
stores messages which can be consumed by client applications. 2)
The exchange receives messages from publisher applications and
routes these to message queues. 3) The binding defines a rela-
tionship between a message queue and an exchange. Using these
components, classic communication paradigms can be implemented
and used such as 1) send and receive, 2) work queues, 3) publish
and subscribe, 4) routing, 5) topics, and 6) request and reply.

In [4, 7, 9, 15], the authors show that the developed communi-
cation interfaces with RabbitMQ can be used for implementing real
software or hardware in the model with little effort. For this reason,
we choose RabbitMQ to support a communication interface for the
individual systems that become part of the SoS.

Modeling and Simulation Tool Cameo Systems Modeler (ver-
sion 2021x) is a modeling and simulation tool that was originally

www.astesj.com 21

www.v-modell-xt.de
www.v-modell-xt.de
https://www.rabbitmq.com/
http://www.astesj.com

S. Melzer et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 19-31 (2022)

developed specifically for the development of systems using the
SysML. To simulate behavioral diagrams, Cameo Systems Mod-
eler uses a subset of the UML elements on the OMG Foundation
Subset for Executable Models (fUML) and W3C State Chart XML
(SCXML) standards. The broker-based SysML Toolbox is an ex-
tension of the Cameo Systems Modeler and provides the integra-
tion of real software and hardware [15]. The Toolbox also offers
predefined SysML elements that can be used to create database
interactions. The SysML Toolbox contains an implementation of
these six messaging paradigms. These communication paradigms
are implemented via the SysML element opaque action and the
usage of the Java-like scripting language BeanShell.

Figure 2: The opaque action EmitLogDirect.bsh for sending a routing message to the
RabbitMQ server

An implementation of the routing communication paradigm
as an opaque action element and the respective BeanShell code
are presented in Figure 2 and in Figure 3. The opaque action is
called EmitLogDirect.bsh. The other paradigms are also available as
opaque actions. These opaque actions are implemented as drag-and-
drop communication elements, with the aim to increase efficiency
and to avoid coding effort.

Figure 3: The source code for sending a routing message to the RabbitMQ server

Figure 4: The opaque action connectMariaDb.bsh for sending a message to the
database MariaDB, source: [23]

The following SysML blocks are used to define input and output pa-
rameters: MessageBroker, MessageQueue, and MessageExchange.
The MessageBroker contains the properties: host, virtualHost, port,
username, and password, which are input parameters for the opaque
behavior EmitLogDirect.bsh. The properties of the MessageEx-
change are exchangeName and routing key. In order to set individual
configurations, it is possible to create instances of the SysML blocks.
An instance of the MessageBroker is brokerConfig. An instance
of the MessageExchange is directExchangeConfig (see Figure 2).
More details of the broker-based SysML Toolbox are given in [15].

For modeling database expressions, the extension of the broker-
based SysML Toolbox can be used or replicated. The prede-
fined database expressions for creating, manipulating, and querying
databases are implemented as opaque actions. These predefined
actions can also be used as drag-and-drop elements (cf. [23]).

Figure 5: The source code for sending a message to the database MariaDB

Figure 5 shows that the opaque action element connectMari-
aDB.bsh has the input values classname, url, username, password,

www.astesj.com 22

http://www.astesj.com

S. Melzer et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 19-31 (2022)

and driver to create a database connection. In addition, the Bean-
Shell code is required to send a request to the database (Figure 5,
line 29) and get a response (Figure 5, line 37).

The source code in the opaque behaviors is tested by running the
simulation. The code can therefore be adopted when implementing,
e.g., systems or SoS.

Database Management System The open-source web-based
database management system Heurist was specially developed for
the Humanities. Heurist allows researchers without prior IT knowl-
edge to develop databases, store and search their data, and publish
it on an automatically-generated website.

4 Information System Development

Data projects in the Humanities depict a perfect test scenario for
information system development for two reasons. First, the projects
tend to be comparatively small and, second, both data and usage
show high degrees of heterogeneity. This phenomenon, known as
the long-tail problem of the Humanities, is due to an institutional
decision of most universities to subsume all kinds of subjects under
one departmental unit called Humanities. Left the reasons aside,
software architects and researchers alike find themselves in the sit-
uation to cope with the high variability of requirements, software
quality attributes, and missing standards. From a point of view of
information system development, one can think of several solutions
for data heterogeneity. In fact, they can also all be viewed as an SoS.
An analysis of the current situation reveals three strategic strains
of data management. Firstly, isolated applications fully indepen-
dent and maintained by decentralized units such as a single chair.
Second, single data applications implemented with a set framework
such as My Content Repository (MyCoRe) managed centrally. And
third, a globally maintained platform with limited but extensive data
curation functionality for archiving, publishing, and analyzing data
such as Heurist. Since sooner or later, the isolated applications are
transferred to one of the centralized data solutions, we will take a
closer look at the two later approaches.

MyCoRe The framework MyCoRe (https://www.mycore.de/
en/) contains all the functionality of a data repository. Some public
institutions such as libraries and universities implement instances
of MyCoRe to administer publication inventories and research data.
As a typical client-server application, it can be used to host any kind
of data. Among the main configurable components of the MyCoRe
system are a Solr (https://solr.apache.org/) search engine,
a data base access handler via Hibernate, a system management
for user rights and access as well as a content store. Interfaces to
external systems are restricted to library formats Z39.50, but also
comprise REST, OAI and SWORD. Generally all documents and
metadata are saved as XML, however, some information is stored in
relational database tables for reasons of performance and modifiabil-
ity. Other interfaces include information exchange to the application
layer, that is, a layout engine rendering XSL stylesheets and some
functionality to configure the data model as well as other system
variables.

Although the structure of a MyCoRe database is known and
could be used for automatic retrieval, the data models of a MyCoRe
application are very flexible and represented without a standard as a
XML schema definition. Its retrieval and analysis depend on how
different data models are related to each other and which structural
information on how to process the data is hidden in the application.
Generally it is possible to parse the data model schema definitions
and based on this information automate the data retrieval. Yet, for
MyCoRe applications that make use of several data models whose
interaction and processing became part of the business logic of the
program, a semi-automated retrieval process seems to be the only
doable solution.

It is a valid data management strategy to have these projects set
up as independent MyCoRe instances if larger amounts of data need
to be handled or if many users with many different tasks and views
on the data require clear and comprehensible workflows. It ensures
more flexibility while keeping data maintenance and server admin-
istration on an acceptable workload. Although the structure of the
data, its formats and processing, is the same for all instances and it
therefore has a lot of technical scalability potential, the operation of
many MyCoRe instances still leads in the long run into maintenance
problems if new versions have to be adjusted to the specific needs
and the changing requirements of the project stakeholders. Thus, if
specific needs such as a federated search are desired, this cannot be
easily added. The implementation of a new function would have to
be done for all instances. And if there are variant instances, a new
function would have to be developed separately for each instance.

An elegant way around the growing maintainability dilemma
is to find a new optimum between usability and scalability. More
specifically, it means trading off the flexibility of front end layouts
and some cut back on performance to integrate projects into one
platform. Indeed, the tendency to focus on services rather than
entire system development plays a role in the design decisions of
SoS. A practical solution is to devise a system that allows for just
so much adjustability as necessary for requirements satisfaction
(variant-oriented system development), but leave the components
responsible for all other quality requirements untouched. Heurist
can be seen as such a way in the middle. Within the approach of SoS,
one could push it a step further and classify data projects according
to their requirements or one could also embrace all smaller projects
into a new platform solution, such as Heurist, and leave the few
projects with a large data inventory on MyCoRe instances to keep
performance on an acceptable level.

Heurist The data management system Heurist is suitable for
variant-oriented system development such as presented in [7, 9].
Even if the development of the systems, here database instances
of Heurist, hold the same functions, these can be used to create a
project-specific database autonomously. If the individual database
instances were to be combined into an aggregated system, it would
be possible to develop the complete system as a single system, as a
product family or as an SoS. However, the system development of a
single system has little flexibility to make extensions. Single sys-
tems cannot be used for different purposes as variants as effortless
and cost-saving than SoSs.

With Heurist, for each project a project-specific web page can
be constructed as a variant with the same functional range. In order

www.astesj.com 23

https://www.mycore.de/en/
https://www.mycore.de/en/
https://solr.apache.org/
http://www.astesj.com

S. Melzer et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 19-31 (2022)

to create a website, the search area, the display of a result set, the
display of the contents as well as the integration of a map can be
straightforwardly arranged. The view can either be programmed
with PHP or implemented via an editor interface.

To sum up, Heurist makes it possible to create a database in-
stance as a variant and supports further development with individual
properties.

4.1 Information Systems

The three information systems EDAK, TheDefix, and NETamil are
autonomously developed information systems at the CSMC using
the tool Heurist while the Collection of Greek Ritual Norms (CGRN)
is an external application that was not modeled in Heurist.

The first three information systems mentioned above represent
how systems can be developed in a variant-oriented manner. The
CGRN system represents a system which becomes part of the SoS
without being an instance of Heurist.

In practice, other systems are often developed as different in-
stances, but they should also have the possibility to use the same
functionality if required. Then, it is desirable that these systems can
also be integrated into the existing overall structure without having
a complete redesign of the SoS.

In what follows it is shown that both variant and non-variant
systems can be part of the SoS and thus all these systems can use
the federated search function.

NETamil During the project NETamil at the Universität Hamburg
a repository was created containing digital images of classical Tamil
manuscripts on palm leaves and on paper from Indian and European
libraries along with a descriptive catalog, e-texts along with critical
editions and annotated translations. The data was originally stored
in a Word document.

In general, the database schemes can either be created in-
dividually or they can also be converted into well established
XML standards such as Text Encoding Initiative (TEI) (https:
//tei-c.org). The TEI format is more common used in the hu-
manities for data storage and exchange.

The automatic transformation of XML-encoded formats into a
Heurist database instance has the feature of transferring a large data
set into a new database instance in short time. In this paper, the
created database systems have been automatically created using a
word to TEI transformation process [24].

EDAK During the project EDAK the Department of History at
the Universität Hamburg created an epigraphic database of ancient
Asia Minor. This database contains a collection of Greek and Latin
inscriptions in the area of modern-day Turkey. The data are stored
in the format EpiDoc to enable easier data exchange between ma-
chines. EpiDoc is a widely used scheme for encoding scholarly and
educational editions of ancient documents. It uses a subset of the
TEI’s standard for the representation of texts in digital form [25].

The EDAK Information system has been automatically created
using an EpiDoc to Heurist transformation process.

TheDefix The database TheDefix contains curse inscriptions of
the ancient world. The data are represented in a project-specific
scheme. In Figure 6 the information system for the TheDefix project
is presented: the search area is located at the left, in the middle
is the result set, and on the very right the project specific data
representation (text and map representation) are displayed.

Figure 6: TheDefix Information System

CGRN The CGRN presents epigraphical data on a website. Its
primary goal is to gather epigraphical material for the study of Greek
rituals and to make these sources widely available [26]. The data
are additionally stored in the EpiDoc format.

Merging information systems into an aggregated system, in
general, requires addressing the complex issue of information in-
tegration. “Information integration is the merging of information
from heterogeneous sources with differing conceptual, contextual,
and typographical representations” (see [27]). For computers it is
difficult to merge information without the knowledge of the syntax,
semantics, model, and access of the data representations (see [28]).
The approaches therefore require a standardized framework for rep-
resenting data that, while supporting autonomy to some degree, can
make heterogeneity manageable.

In the next chapters, we will reveal how to integrate different
autonomously developed information systems, which can also be
physically located in different places, as one SoS, taking into ac-
count that variant parts are not developed redundantly.

Product family The integrated PKT approach includes the VAM
which, in a hierarchical approach of four levels, is used to develop
a variant component for each custom-relevant differentiating prop-
erty, whenever possible in a 1:1 relationship. This approach is
very suitable if as many different customer requirements as possible
have to be satisfied while still remaining competitive. The VAM
approach was also transformed into a model-based approach, using
VAMOS to represent the variants. It was observed that the struc-
tured package overview in the SysML model avoids redundancies

www.astesj.com 24

https://tei-c.org
https://tei-c.org
http://www.astesj.com

S. Melzer et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 19-31 (2022)

and improved transparency and traceability for large and complex
projects (see [11]).

The integrated PKT approach aims at developing a product
family comprising variants. The idea of developing an SoS in a
standardized manner is obvious. However, it must be ensured that
the development of product families also involves the development
of variant hardware components and not just a communication in-
terface. In addition, one has an influence on all systems with the
development of product families. If, however, an information sys-
tem were designed as an SoS consisting of both internal and external
systems, it would be recommendable for a clear focus on the com-
munication interface. This recommendation must be taken into
account when the SoS is actually modeled on variants.

5 Variant-oriented SoS Development
In this section we present how context information relevant to the
SoS and the variants are identified as part of the requirements engi-
neering process ACRE. Additionally, it is described how to design
the structure of an aggregated information system. Finally, this
chapter depicts how to create a communication network as well
as how to simulate the common function federated search using
Cameo Systems Modeler and the broker-based SysML Toolbox.

5.1 Variant-Based Requirements Engineering

For successful system development it is essential that the needs of all
stakeholders are sufficiently satisfied. Therefore, it is necessary to
have identified all persons and institutions that have requirements or
interest in the system. The respective requirements of all identified
stakeholders are collected, documented, and structured according
to the ACRE ontology, presented in [18], with the goal to identify
the requirements of all stakeholders and to be able to manage them
throughout the system development process.

For the variant-oriented development of an information system
as an SoS, a lean version of the ACRE ontology was specified and
used for modeling an aggregated information system. The ACRE
ontology with SoS and variety contexts is presented in Figure 7.

An (abstract) requirement has the specializations business, func-
tional, and non-functional requirements. A requirement description
explains requirements, where some rules are applied. The rules
could be that requirements have to be formulated in accordance
with the ISO 29148:2011 [29] and RFC2119 [30] to use the lin-
guistic syntax profitably. A requirement description is elicited from
one or more Source Element(s). Source elements can be standards,
conversations, requirement lists, and specifications among others.

The contexts are defined as:

• A system of systems context defines views on aggregated
systems.

• A system context contains views of system, subsystem, as-
sembly, and component.

• A stakeholder context defines views on different stakeholders.

• A variety context defines views on system variants.

Use cases are validated by one or more Scenario(s). A Scenario
describes the “what ifs” in a semi-formal or formal way. SysML
activity and sequence diagrams can present Semi-formal Scenarios
to describe communication processes and interactions between ele-
ments in the system. SysML parametric diagrams present the “what
ifs” formally. Both scenario types support the analysis of “what
ifs” to validate the use cases. Through simulation, the modeled
scenarios can test the interactions between all participants within
the communication network.

The developed systems have a satisfying relationship with the
requirements they meet. A System of System element is a general-
ization and has two or more systems as parts.

It should be noted that there are a number of other approaches
to the requirements engineering process. However, it is crucial
that the variety context will be considered during the requirements
engineering process. Contextual information has to be added in all
other approaches as well. The ACRE ontology has already been
successfully applied in many projects over several years using the
SysML [11, 13, 14]. Due to the well-known and proven approach
of applying ACRE with a variety context in a model-based way
during system development, the ACRE approach was chosen for the
development of an SoS.

Figure 7: ACRE ontology with systems of system and variety contexts

5.2 SoS Development

Heurist can be used to create variant database instances and is re-
alized as a client-server architecture. Although established design
patterns are missing in the still evolving software, further develop-
ment tends in the direction to have Heurist fully operational as an
Model-View-Controller (MVC) application. The MVC separates an
application into three main logical components: the model, the view,
and the controller. Each of these components are built to handle
specific development aspects of an application. In the context of
creating an information system, the model represents a data scheme,
the view a graphical user interface, and the controller accepts user
inputs and converts it to commands for the model or view.

The new planned architectural approach is important when it
requires adding another layer, the SoS layer. The development is
currently still in the conceptual phase. As of now, Heurist is initially
used for variant system development and the SoS layer is first tested
out through simulations and prototype implementations.

In addition, the Universität Hamburg operates Heurist as a pub-

www.astesj.com 25

http://www.astesj.com

S. Melzer et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 19-31 (2022)

lic institution, which recommends the use of an adjusted version
of the V-model. It follows that further adjustments will be made to
Heurist in the area of verification and testing.

6 Modeling and Simulation of an SoS
Modeling and Simulating of an SoS using the SysML and the tool
Cameo Systems Modeler has the advantage to test the system’s
behavior before implementation because the specification is ex-
ecutable. “This quality of executable specifications promises to
remedy the most serious problem of software – its lack of correct-
ness and reliability.” [31]

In the following we present how to develop an executable speci-
fication for an SoS during the requirements engineering process.

6.1 Requirements Profile

For the special requirements (business, functional, and non-
functional), new stereotypes were defined as an extension of the
Extended Requirement stereotype. An Extended Requirement is
a standard requirement extension that adds some properties to a
requirement element. The requirements are devised in accordance
with the ISO 29148:2011 and RFC2119.

6.2 SoS Profile in SysML

For representing Systems and SoS the new stereotypes System and
System-of-Systems are defined as extensions of the Metaclass Class,
see Figure 8.

Figure 8: Profile Diagram: new stereotypes Systems of System is a specialization of a
system and has an association to the stereotype System

6.3 Variety Profile

The VAMOS profile which is presented in Figure 1 is used for vari-
ant modeling. Figure 9 presents a concrete application of VAMOS.

The package Variation 1 has the stereotype Variation and con-
tains the System Heurist. The packages V1, V2, and V3 are variants
of Variation 1. The variant V1 contains the System EDAK, the vari-
ant V2 contains the system TheDefix, and the variant V3 contains
the system NETamil, respectively.

One way to introduce a redundancy-reduced communication in-
terface for all variants is to add a SysML port element to the Heurist
system. All variants inherit the port via the specialization. However,

if an external system were added to the aggregated system at a later
point in time, a separate communication interface would have to be
implemented for this external system. This is precisely the crux of
the matter. If a communication interface is to be offered for internal
variant systems as well as for external systems, the communication
interface should be inherited by the systems via a specialization
using an SoS element.

Figure 9: Representation of three variants using VAMOS

6.4 Use Cases

Figure 10 shows the representative use cases for different search
functionalities while considering the variety and SoS contexts. The
main actor is a CSMC user. The CGRN, EDAK, NETamil, and
TheDefix users are specializations of the CSMC user.

Figure 10: Use case diagram with variety and SoS context

One can see that CGRN users do not belong to the variant con-
text as the other three users but all users also have an association
to the use case faceted search. As described in Section 4, the three
systems should be developed as variant systems using Heurist, while
the development of the CGRN system was done externally. Never-
theless, all systems should be networked so that each system can
use the federated search function.

A CSMC user can execute a faceted search. The specialized
users can also execute this search while all users have (project-
)specific search functionalities, e.g., EDAK users search for specific
names mentioned in editions or for object types of inscriptions (use

www.astesj.com 26

http://www.astesj.com

S. Melzer et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 19-31 (2022)

case: edak search), NETamil users look up which word occurs
in which poem and in which line (use case: netamil search), and
TheDefix users want to know the curse id of curses (use case: ne-
tamil search). The different contexts are presented in SysML use
case diagrams.

6.5 Scenarios

Each use case can be validated by one or more scenarios. The sce-
narios can be represented in behavioral diagrams such as activity
or sequence diagrams. We use activity diagrams for modeling and
simulating, e.g., the federated search functionality.

Figure 11: Search for the word “Antiochus” (engl.)

Figure 11 depicts the word “Antiochus” (engl.). It is the input
value (=query) for the federated search activity. Behind the fed-
erated search activity is a more detailed federation process. As a
result, the responses of all databases are printed.

Figure 12: Faceted search actions

Figure 12 illustrates the faceted search process in more
detail. The query is the input value. The first ac-
tion createSQLstatement:searchStringInText creates the SQL
statement “Text LIKE ’%Antiochus%’;”. The action SE-
LECT column FROM tableName WHERE condition creates the

SQL expression SELECT Edition FROM EDAK WHERE ’%Anti-
ochus%’;, which is the input value for the next action. The action
distribute query:EmitLogDirect.bsh sends the SQL expression to
a server. The action receive answer:receiveMessage.bsh sends a
response from a server. The opaque action EmitLogDirect.bsh can
also contain a forwarding process to another database. To realize
a federated search, a script was implemented and must be active
on the server side. In fact, the script calls the requests from the
server (query queue), processes the schema mapping, and passes
the response to the server (response queue). We implemented the
server side scripts in Java. The source code is very similar to that
of Beanshell (see https://www.rabbitmq.com/tutorials/
tutorial-three-java.html). However, other programming
and script languages can also be used such as Python, PHP, C#,
or JavaScript (see https://www.rabbitmq.com/getstarted.
html).

It should be noted here that the scenario at hand already incor-
porates decoupling of the systems using a communication interface.
In a very early phase of system development, communication could
take place directly with the database. And yet, communication in-
terfaces are to be used in the development of SoS. Briefly put, this
has already been taken into account in the scenarios. As intended
by ACRE, the use cases were validated by the scenarios during the
requirements engineering process.

6.6 Communication Interface

Communication interfaces ensure the coverage of the need for infor-
mation and are used for data exchange. For creating communication
networks, RabbitMQ is used as an Application Programming In-
terface (API) for SoSs. RabbitMQ offers broker federation and
therefore allows the exchange between source and destination bro-
kers, or from a message queue in the source broker to an exchange
in the destination broker (see [15]). To model these communica-
tion interfaces the stereotype interfaceBlock is used. One port of
the SoS has at least this communication interface to establish a
communication network between the systems which are part of the
SoS.

Figure 13: Federated Search Network

www.astesj.com 27

https://www.rabbitmq.com/tutorials/tutorial-three-java.html
https://www.rabbitmq.com/tutorials/tutorial-three-java.html
https://www.rabbitmq.com/getstarted.html
https://www.rabbitmq.com/getstarted.html
http://www.astesj.com

S. Melzer et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 19-31 (2022)

Figure 13 illustrates a communication network between loosely-
coupled systems which are to be transferred to an aggregated system
including a communication interface. By coupling the systems, e.g.,
federated searches can be realized. The idea is to provide each
participant with its own RabbitMQ message broker to easily realize
this communication network.

6.7 Structure of the CSMC Information System

Figure 14 illustrates the structure of the SoS named CSMC Infor-
mation System. The SoS has the parts of systems EDAK, TheDefix,
NETamil, and CGRN. These systems are also specializations of
the SoS and inherit all activities of the SoS. In this case, federated
search is part of each system. The SoS has a communication inter-
face which is modeled as a port. The systems EDAK, TheDefix, and
NETamil also inherit all elements of the system Heurist. The system
CGRN is not a specialization of the system Heurist and thus does
not inherit all activities of the Heurist system, but only those of the
SoS.

Figure 14: CSMC Information System

Figure 15 gives another overview about the dependencies gen-
eralization and inherit members between the SoS and the systems.
In the allocation diagram it can be seen at a glance which systems
inherit which activities or which do not. When adding more activi-
ties to an SoS or when adding more external systems, this overview
can be used to quickly determine which elements will be added to a
system when it becomes part of an SoS.

In the development of interfaces, the allocation diagram is an
excellent way to illustrate the dependencies of all the systems in-
volved. In the diagram, the separation between the interfaces of the
SoS or other interface dependencies can be clearly highlighted.

Figure 15: Allocation diagram which represents the dependencies generalization and
inherit members

Figure 16: Allocation diagram which represents the systems which have the SoS
communication interface

7 Application and Results
We evaluate our approach by a feasibility study. For this purpose,
we use a notebook where the tool Cameo Systems Modeler (version
2021x) and the broker-based SysML Toolbox, a RabbitMQ server
(version 3.8.9), and MariaDB (10.5.6) are installed. We emulate the
databases EDAK, and NETamil on the database MariaDB which
represents the Heurist database instances. On a Raspberry Pi 4 we
also installed a RabbitMQ server and MariaDB where the database
CGRN is simulated. Both RabbitMQ servers are configured with
particular message queues, exchanges, and bindings as follows.

The message queues queueDb1 for EDAK, queueDb2 for NE-
Tamil, and queueDb3 for CGRN are defined. They are all in the

www.astesj.com 28

http://www.astesj.com

S. Melzer et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 19-31 (2022)

same virtual host dbFederatation (see Figure 17).

Figure 17: Defined queues on a RabbitMQ server

The exchange is called db.direct. The bindings with the particu-
lar routing key are: queueDb1→ epiDoc, object, query; queueDb2
→ object, queueDb3→ epiDoc, object.

The EDAK data model is represented by the entity type “descrip-
tion.” A description has the attributes “identifier”, “description id”,
“edition”, “category”, “region”, “location”, “find spot”, “text”, and
“date.” Each “description” has the unique identifier ”description id.”

The CGRN data model is represented by the entity type “de-
scription.” A description has the attributes “idno”, “date”, “prove-
nance”, “support”, “layout”, “bibliography”, “text”, “translation”,
“traduction”, “commentary”, “publication”, “authors”, and “project
director.”

The NETamil data model is represented by the
entity types “poem”, “commentary”, and “dictionary.”
A poem has the attributes “edition”, “transliteration”,
“word by word translation into english”, “translation into english”,
and “source.”

We simulate federated searches, such as presented in Fig-
ure 12. During the simulation the query SELECT Edition FROM
EDAK is sent to the EDAK database via the opaque action
edak:connectDatabase.bsh. The SQL expression is published
via the opaque action distribute query EmitLogDirect.bsh. The
databases EDAK receives this expression via the opaque action re-
ceive answer:receiveMessage.bsh. The database CGRN is queried
with the same SQL expression because of the defined routes in the
RabbitMQ servers. For the search query “Antiochus”, written in
Greek language, (SELECT Edition FROM EDAK WHERE ’%Anti-
ochus%’;) we received 1 answer from EDAK and 0 answers from
CGRN. For the search query “Zeus”, written in Greek language,
(SELECT Edition FROM EDAK WHERE ’%Zeus%’;) we received
5 answers from EDAK and 1 answer from CGRN (see Figure 18).

Figure 18: Database results for the search query “Zeus” written in Greek language

For the search query SELECT COUNT (e.Date) AS Number, e.Date
AS Date FROM EDAK e GROUP BY e.Date we receive the follow-
ing results (excerpt):

+--------+----------------+----------+

| Number | Date | Database |

+--------+----------------+----------+

| 31 | 4. Jh. v. Chr. | EDAK |

| 200 | 1. Jh. n. Chr. | EDAK |

| 818 | 2. Jh. n. Chr. | EDAK |

| 642 | 3. Jh. n. Chr. | EDAK |

| 156 | 4. Jh. n. Chr. | EDAK |

+--------+----------------+----------+

| 1 | ca. 250-200 BC | CGRN |

| 2 | ca. 350-300 BC | CGRN |

+--------+----------------+----------+

The responses returned by EDAK and CGRN show that the date
is differently represented in both databases. The date differs in lan-
guage and representation (indication as century or year). When the
query is filtered by year, one of the two databases returns an empty
result set as response. A translation of the date representations can
lead to a complete answer. A mapping between the representation of
the date is required to ensure correct query results. Schema mapping
is generally required when defining federated search queries.

This simulation example also presents that queries from EDAK
are answered using both the EDAK and the CGRN databases. NE-
Tamil is not involved in this specific query process because of the
missing routing key in the RabbitMQ configurations. At this point
it makes no sense in terms of content. If one wants to compare
another repository with Tamil poems, a route can be defined via the
RabbitMQ configuration that supports the sensible federated search.
In this example, the Cameo System Modeler’s console represents
the CSMC information system, which receives all responses from
the various databases from the federated search. If either a Heurist
database instance or an externally developed system is to be ag-
gregated to the SoS, this can be realized by installing a RabbitMQ
broker, programming a script for publishing and receiving messages
from the broker, and setting the broker configurations.

In this way, new databases can be added so that our principle
“bring your own database is supported. Then all new systems of the

www.astesj.com 29

http://www.astesj.com

S. Melzer et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 19-31 (2022)

SoS will also benefit from the federated search. Consider that the
challenges of information integration must be resolved for mapping
to use federated searches successful.

In the humanities, as well as other fields, it is important that
existing functions such as federated searches can be used without
large expenditure of resources. After all, resources are limited. Ex-
isting data can thus be enriched with further information in a short
time and users can focus more on editing content. Using the alloca-
tion diagram to keep an overview of all systems to be aggregated
also helps to keep track of the growing number of systems (cf.,
Figure 15 and Figure 16). All systems, whether variants or not, can
be specifically developed and integrated into the overall SoS. With-
out considering this overview, existing systems could be produced
mistakenly from scratch simply because they are unknown and as
such a variant is regarded as an external (unregistered) system. As
a positive effect of the present approach, one has the advantage of
being able to cooperate with external parties whether their system
can also be developed as a variant of one’s own system, so that the
same communication interface (csmcInterface) can be used.

At the Universität Hamburg Heurist has already been set up and
it is being used for the autonomous development of information
systems. More than ten information systems have already been
created. When changing functions, such as the web page design, the
allocation diagram can be used to see which systems are affected.

The special feature of the model-based documentation of SoSs
and the variants with VAMOS make it convenient for the devel-
opers to get an overview between the different diagram types and
the filter properties for displaying data. Developers also see which
systems are relevant and whether changes have an impact on the
system properties or not. It is self-explanatory to switch between
a display of specific SoS or variant elements, or view everything
together in one diagram, as shown in Figure 15. The model-based
and variant-oriented approach also ensures that the interfaces of
the systems are not developed redundantly. The realization of a
communication interface using RabbitMQ supports the aggregation
of decoupled systems by implementing message scripts that are
publicly available.

It is planned to transfer the prototypically implemented CSMC
Information System with the presented communication interface
into a product. Regarding the product development, the variant-
oriented approach points in the right direction as to even more
relevant parameters, such as performance and security attributes,
that should be tested in advance.

The approach at hand also fits in other areas of system develop-
ment, e.g., in the aviation industry. There, it has already been shown
that the networking of systems after the digitization of business
processes can be helpful to automate ordering processes between
supply chain tiers [32]. It would be conceivable to design the or-
dering process as part of the SoS and thereby identify the variants
in the ordering process as well as the external systems that want
to become part of the SoS. As an assumption, there will be more
individual solutions that will be aggregated into an SoS. Here, too,
the approach offers the advantage of keeping an overview of all sys-
tems and working towards a common interface in a targeted manner
so that the connection to the SoS can be made with little resource
effort.

8 Conclusion and Outlook
In this paper, we presented how to develop an aggregated system,
which, understood as an SoS, was put into practice in a model-based
and variant-oriented way. The aim was to identify the number of
variants easily at an early stage of the requirements engineering
process so that the development of elements has neither to be done
holistically nor redundantly. For this purpose, we used the ACRE
ontology with the extended contexts on SoS and variety, and ap-
plied this approach with the SysML tool Cameo Systems Modeler
as well as the VAMOS profile. In addition, we defined an SoS
profile which helped us to distinguish between developing variants
and merging variants as well as non-variants into an SoS. For the
implementation of a communication interface, RabbitMQ was used
as a message broker, which allows loosely coupled systems to be
brought together in a simple way. The variant database systems
were developed with Heurist which on the one hand supports the
development of automated database systems and on the other hand
keeps the heterogeneity under control, often resulting from the many
requirements. The prototype implementation showed us that this
path is promising and should be further pursued.

The advantage of merging multiple database systems is that
functions such as a federated search can be implemented, however,
the problem of data integration between all the database instances
must be solved beforehand so that a search query does not lead to a
faulty response. Therefore it must be ensured that the data or their
representations have the same syntax, semantics, model, and access.
At the CSMC, a feasible study is currently in progress.

Conflict of Interest The authors declare no conflict of interest.

References
[1] E. Werner, “Clay Tablet (AO 29196) from the Louvre in Paris (3D model),”

2020, doi:http://doi.org/10.25592/uhhfdm.918.

[2] E. Werner, “Clay Tablet (KUG 15) from the University Library Giessen (3D
model),” 2020, doi:https://doi.org/10.25592/uhhfdm.766.

[3] D. Krause, G. Beckmann, S. Eilmus, N. Gebhardt, H. Jonas, , R. Rettberg,
“Integrated Development of Modular Product Families - a Methods Toolkit,”
in In T.W. Simpson, J. Jiao, Z. Siddique, K. Hölttä-Otto (Eds.): Advances in
product family and product platform design: Methods & applications, 245–269,
Berlin Springer, 2014.

[4] O. C. Eichmann, S. Melzer, R. God, “Model-based Development of a System
of Systems Using Unified Architecture Framework (UAF): A Case Study,” in
Proceedings of 2019 IEEE International Systems Conference, IEEE, 2019.

[5] C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, J. Peleska, “Systems of
Systems Engineering: Basic Concepts, Model-Based Techniques, and Research
Directions,” 2015.

[6] M. W. Maier, “Architecting principles for systems-of-systems,” Systems Engi-
neering, 1, 267–284, 1998.

[7] S. Melzer, H. Peukert, H. Wang, S. Thiemann, “Model-based Development of
a Federated Database Infrastructure to support the Usability of Cross-Domain
Information Systems,” in Proceedings of 2022 IEEE International Systems
Conference, IEEE, 2022.

[8] O. C. Eichmann, S. Melzer, M. Hanna, R. God, D. Krause, “A Model-Based
Approach for the Development of Modular Product Families Considering Dif-
ferent Life Phases,” in Proceeding EMEA Systems Engineering Conference,
EMEASEC 2018 / TdSE 2018, 2018.

www.astesj.com 30

http://www.astesj.com

S. Melzer et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 7, No. 3, 19-31 (2022)

[9] S. Melzer, S. Thiemann, R. Möller, “Modeling and Simulating Federated
Databases for early Validation of Federated Searches using the Broker-based
SysML Toolbox,” in Proceedings of 2021 IEEE International Systems Confer-
ence, IEEE, 2021.

[10] T. Weilkiens, Variant Modeling with SysML, MBSE4U Booklet Series, 2016.

[11] T. Bahns, S. Melzer, R. God, D. Krause, “Ein modellbasiertes Vorgehen zur
variantengerechten Entwicklung modularer Produktfamilien,” in Tagungsband
zum Tag des Systems Engineering (Eds.: Chr. Muggeo, S.O. Schulze), Carl
Hanser Verlag GmbH & Co. KG, 2015.

[12] R. God, S. Melzer, U. Wittke, “SiLuFra Schlussbericht - Sichere Luftfracht-
Transportkette: Konzepte, Strategien und Technologien für sichere und ef-
fiziente Luftfracht-Transportketten; Teilvorhaben: Modellbasierte Architektur-
und Lösungsspezifikation; Laufzeit des Vorhabens: 01.07.2013 - 31.08.2016,”
2016.

[13] R. God, S. Melzer, “Teilvorhaben: Spezifikation und Integration cyber-
physischer Betriebs- und Geschäftsprozesse : Schlussbericht : Laufzeit
des Vorhabens: 01.05.2016-30.09.2019 : Berichtzeitraum: 01.05.2016-
30.09.2019, Spezifikation und Integration cyber-physischer Betriebs- und
Geschäftsprozesse,” Technical report, Technische Universität Hamburg, In-
stitut für Flugzeug-Kabinensysteme, Hamburg, 2020, doi:10.2314/KXP:
1726105857.

[14] R. God, U. Wittke, S. Melzer, C. Witte, “KomKab Schlussbericht - Kom-
munizierende Kabine; Teilvorhaben: Digitaler Ramp-Agent; Laufzeit des
Vorhabens: 01.01.2016 - 31.03.2019,” 2019.

[15] S. Melzer, J. P. Speichert, O. C. Eichmann, R. God, “Simulating cyber-physical
systems using a broker-based SysML Toolbox,” in AST 2019 - 7th Interna-
tional Workshop on Aircraft System Technologies, Hamburg University of
Technology, 2019.

[16] D. Arndt, S. Melzer, R. God, M. Sieber, “Konzept zur Verhaltensmodellierung
mit der Systems Modeling Language (SysML) zur Simulation varianten Sys-
temverhaltens,” in Tagungsband zum Tag des Systems Engineering (Eds.: S.O.
Schulze, C. Tschirner, R. Kaffenberger, S. Ackva), Carl Hanser Verlag, 2017.

[17] S. Melzer, R. God, T. Kiehl, R. Möller, M. Wessel, “Identifikation von Varianten
durch Berechnung der semantischen Differenz von Modellen,” in Tagungsband
zum Tag des Systems Engineering (Eds.: M. Maurer, S. O. Schulze), Carl
Hanser Verlag GmbH & Co. KG, 2014.

[18] J. Holt, S. A. Perry, M. Brownsword, Model-Based Requirements Engineering,
volume 9 of Professional Applications of Computing Series, Institution of
Engineering and Technology, Stevenage, 2012.

[19] O. C. Eichmann, S. Melzer, F. Giertzsch, R. God, “Stakeholder Needs and
Requirements Definition During Service Development in a System of Systems,”
in Proceedings of 2020 IEEE International Systems Conference, IEEE, 2020.

[20] J. Holt, S. Perry, R. Payne, J. Bryans, S. Hallerstede, F. Hansen, “A Model-
Based Approach for Requirements Engineering for Systems of Systems,” IEEE
Systems Journal, 9(1), 252–262, 2015, doi:10.1109/JSYST.2014.2312051.

[21] J. Holt, S. Perry, SysML for Systems Engineering: A Model-Based Approach,
Computing, Institution of Engineering and Technology, 2018.

[22] A. Qpid, “Messaging built on AMQP,” https://qpid.apache.org/releases/qpid-
cpp-master/cpp-broker/book/chap-Messaging User Guide-
Broker Federation.html, 2015, accessed January 22, 2022.

[23] S. Melzer, O. C. Eichmann, H. Wang, R. God, “Modeling and Simulation of
Database Interactions,” Tag des Systems Engineering 2021 (TdSE2021), 2021,
doi:10.25592/uhhfdm.9696.

[24] S. Schiff, S. Melzer, E. Wilden, R. Möller, “TEI-based Interactive Critical Edi-
tions,” in 15th IAPR International Workshop on Document Analysis Systems,
Lecture Notes in Computer Science (LNCS), Springer, 2022.

[25] T. Elliott, G. Bodard, E. Mylonas, S. Stoyanova, C. Tupman, S. Vanderbilt,
et al., “EpiDoc Guidelines: Ancient documents in TEI XML (Version 9).”
Available: https://epidoc.stoa.org/gl/latest/., (2007-2022), accessed January 22,
2022.

[26] J.-M. Carbon, S. Peels, V. Pirenne-Delforge, “A Collection of Greek Ritual
Norms (CGRN),” Liège, http://cgrn.ulg.ac.be, consulted in 2020, 2016–2020,
online; accessed 10 December 2021.

[27] W. Hao, S. De-wen, F. Xujian, X. Haitao, “Application of information fusion
technologies for multi-source data,” Journal of chemical and pharmaceutical
research, 5, 2013.

[28] U. Leser, F. Naumann, Informationsintegration: Architekturen und Methoden
zur Integration verteilter und heterogener Datenquellen, dpunkt.verlag GmbH,
2007.

[29] ISO/IEC/IEEE 29148:2011(E), “Systems and software engi-
neering - Life cycle processes - Requirements engineering,”
https://wiki.unix7.org/ media/ict/lib/iso-iec-ieee-29148-2011.pdf, accessed
January 22, 2022.

[30] S. Bradner, “Key words for use in RFCs to Indicate Requirement Levels,” Har-
vard University, https://datatracker.ietf.org/doc/html/rfc2119, 2017, accessed
January 22, 2022.

[31] N. E. Fuchs, “Specifications are (preferably) executable,” Softw. Eng. J., 7,
323–334, 1992.

[32] H. Wang, S. Melzer, “Simulation of Ordering Processes across different Supply
Chain Tiers in the Aviation Industry,” in 2022 IEEE International Systems
Conference (SysCon) (IEEE SysCon 2022), Montreal, Canada, 2022.

www.astesj.com 31

http://www.astesj.com

	 Introduction
	 Related Work
	Preliminaries
	Modeling Languages
	Methods
	Tools

	Information System Development
	Information Systems

	 Variant-oriented SoS Development
	Variant-Based Requirements Engineering
	SoS Development

	 Modeling and Simulation of an SoS
	Requirements Profile
	SoS Profile in SysML
	Variety Profile
	Use Cases
	Scenarios
	Communication Interface
	Structure of the CSMC Information System

	 Application and Results
	 Conclusion and Outlook

